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SUMMARY Species within the genus Burkholderia exhibit remarkable phenotypic di-
versity. Genomic plasticity, including genome reduction and horizontal gene transfer,
has been correlated with virulence traits in several species. However, the conserva-
tion of virulence genes in species otherwise considered to have limited potential for
infection suggests that phenotypic diversity may not be explained solely on the ba-
sis of genetic diversity. Instead, differential organization and control of gene regula-
tory networks may underlie many phenotypic differences. In this review, we evaluate
how regulation of gene expression by members of the multiple antibiotic resistance
regulator (MarR) family of transcription factors may contribute to shaping the physi-
ological diversity of Burkholderia species, with a focus on the clinically relevant
human pathogens. All Burkholderia species encode a relatively large number of
MarR proteins, a feature common to bacteria that must respond to environmental
changes such as those associated with host invasion. However, evolution of gene
regulatory networks has likely resulted in orthologous transcription factors control-
ling disparate sets of genes. Adaptation to, and survival in, diverse habitats, includ-
ing a human or plant host, is key to the success of Burkholderia species as (opportu-
nistic) pathogens, and recent reports suggest that control of virulence-associated
genes by MarR proteins features prominently among the survival strategies em-
ployed by these species. We suggest that identification of MarR regulons will
contribute significantly to clarification of virulence determinants and phenotypic di-
versity.
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INTRODUCTION

embers of the genus Burkholderia (originally classified as Pseudomonas) are

versatile in terms of their ecological niches. Burkholderia species use oxygen as
the primary terminal electron acceptor during respiration; however, some species can
survive hypoxic environments, and some can perform anaerobic respiration with nitrate
as the terminal electron acceptor or use fermentation to produce ATP (1). The majority
of species inhabit the rhizosphere, where they utilize plant-derived compounds as
nutrients; some species fix nitrogen and are beneficial to the plants, and others are
efficient bioremediation agents (2). For example, several species in the genetically
related but phenotypically diverse Burkholderia cepacia complex (Bcc) are useful as
plant pest antagonists, plant growth-promoting rhizobacteria, or degraders of toxic
substances (3, 4). However, others are plant pathogens, including B. cepacia, which was
originally identified by Walter Burkholder as the causative agent of soft-rot disease in
onion (5). Subsequently, B. cepacia emerged as an opportunistic human pathogen that
can survive intracellularly and remain metabolically active (6). In addition to B. cepacia,
the related Bcc members B. cenocepacia and, more recently, B. multivorans have
received much attention as some of the most serious pathogens of immunocompro-
mised individuals, such as patients with cystic fibrosis (CF) and chronic granulomatous
disease (CGD). Bcc infections in CF patients have highly unpredictable outcomes that
range from largely asymptomatic infections to the potentially fatal necrotizing pneu-
monia and sepsis known as cepacia syndrome (7).

While Bcc members are considered opportunistic pathogens, other species of this
genus, the facultative intracellular pathogen B. pseudomallei and the obligate mam-
malian pathogen B. mallei, are the causative agents of melioidosis (Whitmore’s disease)
and glanders, respectively; a low infectious dose is sufficient for transmission of disease,
rendering B. mallei in particular highly infectious. Despite its inability to persist in the
environment, B. mallei was used in the past for biological warfare on account of the low
infectious dose, capacity for latency, and likelihood of causing lethal infections (for
example, to target livestock during World War 1), and both species have been catego-
rized by the Centers for Disease Control and Prevention (CDC) as category B biological
agents (8).

The availability of complete genome sequences (as opposed to relying on 16S rRNA)
for Burkholderia species led to a reevaluation of phylogenetic relationships. Such
analysis prompted the division of Burkholderia species into separate clades. Species
within clade | include all plant and human pathogens and represent the clinically
relevant species: one group comprises Bcc species; a second group consists of the
closely related species of the B. pseudomallei complex (Bpc), a group previously referred
to as the Bptm group, as it was named for the originally identified members, B.
pseudomallei, B. thailandensis, and B. mallei; and a third group comprises phytopatho-
gens such as B. glumae and B. gladioli. A second clade, for which the new genus
Paraburkholderia was adopted, consists mainly of environmental species such as B.
xenovorans (9-12).

While genetic diversity has been correlated with virulence traits in several species,
the conservation of virulence genes in species without a marked potential for virulence
suggests that phenotypic diversity may not be explained solely on the basis of such
genetic variability. However, differential evolution of gene regulatory networks may
underlie many phenotypic differences. The purpose of this review is to evaluate how
members of the multiple antibiotic resistance regulator (MarR) family of transcription
factors may contribute to shaping the physiological diversity of Burkholderia species,
with a focus on the clinically relevant human pathogens. Since the majority of MarR
proteins contain one or more cysteine residues, and since bacterial defenses against
host-generated reactive oxygen species (ROS) are key to successful host colonization,

March 2019 Volume 83 Issue 1 e00039-18

Microbiology and Molecular Biology Reviews

mmbr.asm.org 2


https://mmbr.asm.org

MarR Proteins from Burkholderia Species

the role of oxidant responses is considered. In addition, Burkholderia species may
periodically encounter hypoxic conditions that demand metabolic adjustment, condi-
tions that may, for instance, be present in moist soil or in oxygen-deprived host
microenvironments such as abscesses or the CF lung. Both circumstances, the addition
of an oxidant or adjustment to microaerobic conditions, have been shown to elicit
global changes in gene expression, including changes in the expression of genes
encoding specific MarR family proteins (13, 14).

BURKHOLDERIA SPECIES
The Bpc Group Members B. thailandensis, B. mallei, and B. pseudomallei

At least seven closely related species belong to the Bpc group (11), of which B.
pseudomallei and B. mallei have been shown to cause severe and potentially fatal
human disease. In contrast, B. thailandensis is a soil saprophyte and only rarely
associated with human infection. Prior to its classification in the late 1990s, B. thailan-
densis was often mistaken for B. pseudomallei due to similarity in the biochemical,
morphological, and antigenic profiles (15). Key traits that differentiate these strains
include the ability of B. thailandensis to assimilate L-arabinose, which suppresses its type
3 secretion system (T3SS), an important factor contributing toward rendering this
species relatively nonpathogenic to humans and animals (16, 17). B. pseudomallei
K96243 and B. thailandensis E264 display high genomic synteny: they have <10
nucleotide differences between their 16S rRNA sequences, and ~85% of their genes are
conserved (18, 19). B. mallei is believed to have evolved from a B. pseudomallei isolate
by selective genome reduction (20). Although the B. mallei ATCC 2344 genome (5.8 Mb)
is 20% smaller than the B. pseudomallei K96243 genome (7.2 Mb), the two genomes
share 99% nucleotide sequence identity (21, 22). During evolution, B. mallei appears to
have lost genes that are necessary for environmental survival while preserving those
required for persistence in the host (20, 21).

Despite exhibiting reduced virulence, B. thailandensis encodes homologs of known
virulence factors, including lipopolysaccharide, the T3SS, and quorum-sensing systems
that are expressed in B. pseudomallei and B. mallei (23, 24). For this reason, B. thailan-
densis is commonly used as a model system to investigate virulence mechanisms. It also
highlights the lack of an obvious correlation between gene content and virulence and
suggests that differential transcriptional control contributes to phenotypic differences
(as exemplified by the above-mentioned downregulation of genes encoding T3SS
components upon expression of the arabinose assimilation operon). These Burkholderia
species also share resistance to many common antibiotics; this feature, along with facile
aerosol transmission of the pathogenic species and no availability of effective vaccines,
forms the basis for their categorization as potential bioterror agents (25).

The host-pathogen interaction does not always result in disease. The outcome
depends on whether the initial steps of the interaction, namely, commensalism,
colonization, persistence, and infection, result in host damage. As noted above, B.
thailandensis conserves a number of genes associated with virulence in the pathogenic
species, yet it is largely considered nonpathogenic, likely due in part to a failure to
express virulence determinants such as the T3SS. The T3SS is a highly specialized
virulence system that plays a vital role in the host-pathogen interaction by facilitating
events such as bacterial invasion and escape from endocytic vesicles (26). B. pseudomal-
lei and B. mallei encode three and two T3SS systems, respectively, and they both
express one Bsa (Burkholderia secretion apparatus) T3SS that is required for virulence
(27, 28). While B. thailandensis is rarely pathogenic to humans, a few cases have been
reported (29), showing that B. thailandensis is capable of causing human infection, and
it has been suggested that the B. thailandensis-encoded Bsa T3SS has a similar function
in virulence as in B. pseudomallei and B. mallei (23). A transcriptome analysis of B.
pseudomallei grown intracellularly in a human macrophage-like cell line showed dif-
ferential expression of a large number of genes, including repression of the virulence-
associated T3SS, indicating that the T3SS is vital during the initial phase of invasion but
not at later stages (30).
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The monophyletic Bcc group currently comprises more than 20 members (11). B.
cenocepacia and B. multivorans are the most prevalent species, accounting for ~90% of
Bcc infections in CF patients, and they have the potential to cause epidemic outbreaks
because of transmissibility from one infected patient to another (31). A main contrib-
uting factor is intrinsic resistance to antibiotics and antiseptics, which confounds both
treatment and disinfection protocols. B. cenocepacia is considered particularly danger-
ous due to the number of epidemic strains and the risk of developing fatal cepacia
syndrome (31).

In B. cenocepacia J2315, genomic islands associated with virulence occupy 9.3% of
its 8.06-Mb chromosome (19). A number of virulence factors have been experimentally
verified. Examples include proteins involved in iron homeostasis, such as proteins
responsible for the generation of ornibactin and pyochelin, both of which are sidero-
phores that scavenge free iron from the environment (32). B. cenocepacia also encodes
members of all five major families of efflux systems that may contribute to intrinsic
resistance to polymyxins, aminoglycosides, and beta-lactams (19, 31). An intriguing
link between iron uptake and antimicrobial resistance is that upregulation of RND
(resistance-nodulation-division) efflux pumps may be required for siderophore secre-
tion and that the bacteria “hit two birds with one stone” by simultaneously promoting
antibiotic efflux while adjusting to an iron-limiting environment (31). Another factor
contributing to antibiotic resistance is biofilm formation, in which surface-adherent
cells are encased in a protective extracellular matrix. In the lungs of CF patients, B.
cenocepacia may even exist together with the opportunistic pathogen Pseudomonas
aeruginosa to form persistent biofilm infections (33).

B. xenovorans

B. xenovorans (now Paraburkholderia; previously known as B. fungorum) is more
distantly related to the pathogenic strains. It was isolated from a landfill contaminated
with polychlorinated biphenyl (PCB), and it has received much attention due to its
ability to degrade PCB and other aromatic compounds. A genome comparison of B.
xenovorans with B. pseudomallei and B. cenocepacia revealed 77.5% and 76.8% average
nucleotide identities, respectively (34). It has three replicons, the large chromosome 1,
chromosome 2, and the megaplasmid, and many core functions are encoded on the
larger chromosome 1, while there is much greater genetic diversity among the smaller
replicons, a feature that is common for Burkholderia species. Degradation of aromatic
compounds typically generates intermediates that are processed in the conserved
B-ketoadipate pathway, and many peripheral pathways that feed into this central
pathway have been identified (34, 35). Although B. xenovorans possesses various genes
required for in vivo survival, it lacks several genes that encode virulence factors and is
therefore considered to have little potential for being infectious (34).

MULTIPLE ANTIBIOTIC RESISTANCE REGULATORS (MarR)

The MarR transcription factor was first identified in Escherichia coli K-12 and shown
to regulate resistance to diverse antibiotics, organic solvents, and oxidative stress
agents (36, 37). More than 54,000 genes that encode MarR proteins in bacteria and
archaea have since been annotated according to Ensembl Bacteria, with an average of
~7 paralogs per genome (38). MarR family proteins, which have been suggested to
have originated before the divergence of bacteria and archaea (39), belong to the very
common winged helix-turn-helix (wWHTH) subset of HTH proteins. The wHTH proteins
are characterized as having at least one B-sheet (or wing) adjacent to the HTH motif
(a2-a3-04) (Fig. 1), and DNA binding typically involves the insertion of recognition
helices into DNA major grooves, with the wing contacting the neighboring minor
groove. MarR proteins are further characterized as being obligate dimers in which both
N- and C-terminal helices are intertwined to form a dimer interface that is connected
to the wHTH motif by the long helices a2 and &5 (Fig. 1). Thus, a signature of MarR
family proteins is that they form a single, compact globular fold with the DNA-binding

March 2019 Volume 83 Issue 1 e00039-18

Microbiology and Molecular Biology Reviews

mmbr.asm.org 4


https://mmbr.asm.org

MarR Proteins from Burkholderia Species

FIG 1 Prototypical MarR family protein. Shown is a predicted model of B. thailandensis BifR, created using
SwissModel in the automated mode using the structure under PDB accession number 2FBH as the
template. One monomer is in purple, and the other is colored blue to red (amino terminus to carboxy
terminus, with helices a1 to a6 identified). The DNA recognition helices (a4) are identified in both
subunits.

region composed of central helices, in contrast to many other wHTH-type proteins, in
which the DNA-binding domain is separate from a regulatory or ligand-binding domain
and located at either the N or C terminus (40-43).

The MarR protein family is named for E. coli MarR, which indirectly controls the
expression of a multidrug efflux pump via repression of the marRAB operon, which
encodes the transcriptional activator MarA (44). The multiple-antibiotic resistance
phenotype arises from the inactivation of MarR by oxidation, an event, for example,
brought about by antibiotic-induced envelope stress, which results in the release of
redox-active Cu?™ from membrane proteins (45). While several other MarR family
proteins have been functionally characterized and shown to play vital roles in the
control of antibiotic efflux, other events, such as oxidative stress responses, the control
of genes involved in virulence, and catabolism of aromatic compounds, have also been
reported to be under the control of MarR family transcriptional regulators (for exam-
ples, see Table 1 and references 38, 40, and 43). Based on either functional character-
istics, sequence features, or a combination thereof, subtypes of MarR family proteins
have been identified; examples include SlyA, which is considered to have arisen from
gene duplication and which positively regulates gene expression by a mechanism that
involves remodeling of repressive H-NS-DNA complexes, and urate-responsive tran-
scriptional regulators (UrtR), which feature characteristic sequence elements, including
an N-terminal a-helical extension (46-48).

MarR family proteins most often bind DNA to prevent RNA polymerase from
accessing cognate promoters, thereby repressing gene expression (Fig. 2). Upon bind-
ing of a small-molecule ligand or specific cysteine oxidation, DNA binding is attenuated,
resulting in gene expression (for a review of this and other modes of gene regulation
by MarR proteins, see references 40 and 43). MarR proteins are often autoregulatory;
their cognate sites are palindromic sequences (reflecting binding of pairs of recognition
helices in consecutive DNA major grooves), and such sites may be frequently identified
in their gene promoters. Genes encoding MarR family proteins are typically adjacent to
(and often divergent from) a gene under MarR control, and MarR proteins may in
addition control the expression of distant genes in their regulon (Fig. 2). By responding
to environmental changes, MarR proteins are ideally poised to transduce such cues into

TABLE 1 Examples of MarR homologs, classified according to their regulatory role

Microbiology and Molecular Biology Reviews

Regulatory role(s) MarR homologs (reference)

Antibiotic and oxidative stress responses MarR (45), MexR (106), EmrR (107), PecS (108), HucR (109), MftR (67), TamR (110),
OhrR (81), SarA (111), SarZ (112), MosR (113)

Production of virulence factors SlyA (114), PecS (108), NadR (115)

Catabolism of aromatic compounds HpaR (85), CinR (116), BadR (117), HucR (109), HcaR (118)

Master regulator MgrA (119), SarZ (112), PecS (108), MftR (64)
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FIG 2 Typical mode of gene regulation by MarR homologs. (A) In the absence of a small-molecule ligand
or oxidant, the gene encoding the MarR family protein (marR) (cyan arrow) and a divergently oriented
gene(s) are repressed by the MarR family protein binding cognate sites in gene promoters (cyan ovals).
MarR may also control distant members of its regulon (dotted line) (genes under the control of the MarR
family protein are shown as purple arrows). Repression of gene expression is denoted with red crosses.
(B) Ligand binding or specific oxidation of the MarR family protein (with red dots representing ligand)
relieves repression, as the ligand-bound MarR family protein dissociates from cognate sites.

changes in gene expression, and many that regulate the production of virulence factors
in response to host-derived signals have been identified (Table 1).

ROLE OF REACTIVE OXYGEN SPECIES IN HOST DEFENSES

When a bacterium infects a host, reactive oxygen species (ROS) are produced as a
first defense (49, 50). The primary source of ROS is NADPH oxidase, which produces a
superoxide anion by transferring an electron from NADPH to molecular oxygen. Su-
peroxide in turn dismutates to H,O, and oxygen, and H,O, may be converted to
hypochlorous acid by myeloperoxidase or react with transition metals to produce
highly reactive hydroxyl ions (OH™). Lipid peroxidation may also occur by the abstrac-
tion of hydrogen from polyunsaturated fatty acids, with the resulting organic hydroper-
oxides causing further damage to cellular components (51). In chronic granulomatous
disease (CGD), a defect in NADPH oxidase impairs the phagocytic production of ROS, a
result of which is that patients suffer recurring infections, such as infections with Bcc
pathogens (52).

In the absence of a functional NADPH oxidase, xanthine oxidase becomes important
for bacterial clearance (53). Xanthine dehydrogenase functions in purine degradation,
transferring electrons to NAD* to generate NADH and in the process converting
hypoxanthine to xanthine and xanthine to urate (54). In mammals, xanthine dehydro-
genase is converted to xanthine oxidase by reversible sulfhydryl oxidation or by
irreversible proteolytic modification, and this form of the enzyme instead transfers
electrons to molecular oxygen to generate superoxide (55). In plants, the urate that is
produced has been shown to act as an antioxidant to protect host cells from the
adverse effects of ROS (56).

While not part of the innate host defense, it should also be noted that treatment
with antibiotics has been linked to bacterial production of ROS. For example, bacteri-
cidal antibiotics such as fluoroquinolones, which are known for their inhibition of the
bacterial gyrase, resulting in cell death because of the accumulation of DNA double-
strand breaks, were reported to elicit oxidative stress due to the production of hydroxyl
radicals (57, 58). Similar antibiotic-mediated production of ROS was also reported in Bcc
species (59). However, whether or not such ROS contribute to antibiotic-mediated cell
killing is subject to debate, and it may depend on specific circumstances (60, 61). As
noted above, another potential consequence of antibiotic treatment is envelope stress,
in which damaged or misfolded membrane proteins may release Cu?*; in E. coli, a
consequence of such Cu2* accumulation is the oxidation of MarR to generate disulfide
bonds between two protein dimers, thereby precluding DNA binding (45).

MarR PROTEINS IN BURKHOLDERIA SPECIES

All Burkholderia species encode a relatively large number (greater than the average
of ~7 per bacterial genome [38]) of MarR family proteins. A correlation between large
genome size and a greater number of transcriptional regulators is a general feature and
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a common characteristic of bacteria with a more complex lifestyle that may require
responses to environmental changes (41). The MarR homologs in the surveyed Burk-
holderia species were identified in an iterative approach, starting with proteins anno-
tated as a MarR family transcriptional regulator in the Burkholderia Genome Database
(http://www.burkholderia.com/) (62). This was followed by a search of the same data-
base for orthologs of the annotated MarR family proteins; for example, 9 MarR ho-
mologs were found in B. thailandensis based on annotation alone, with an additional 3
being identified as orthologs of MarR family transcriptional regulators annotated in
other Burkholderia genomes. Sequences of select proteins, including any orthologs
annotated as a “hypothetical protein,” were submitted to Pfam for verification. This
analysis revealed that B. thailandensis encodes 12 annotated MarR homologs, all of
which are conserved in the Bpc group members B. pseudomallei and B. mallei, and this
conservation extends to the neighboring gene(s), which may be under the control of
the respective MarR protein (Table 2). B. pseudomallei and B. mallei encode an addi-
tional 3 MarR family proteins, whereas B. cenocepacia and B. xenovorans encode totals
of 26 and >30 MarR family proteins, respectively.

A phylogenic tree of MarR family proteins from the surveyed Burkholderia species
was constructed (Fig. 3), with sequences of MarR and SlyA from E. coli K-12 included for
reference. This analysis indicated the close evolutionary relationship between orthologs
from the different Burkholderia species (Table 2). This includes several MarR orthologs
that are conserved across Bpc, Bcc, and Paraburkholderia (B. xenovorans) species, such
as HpaR, OhrR, BifR, and TctR. Others, such as MftR, are absent from B. xenovorans,
perhaps reflecting a gene loss event after the divergence of the genus Paraburkhold-
eria. That other MarR family proteins exist in only a few Burkholderia species suggests
frequent gene loss/duplication and/or horizontal gene transfer events.

Evolution of gene regulatory networks may result in orthologous transcription
factors controlling disparate sets of genes, although they may maintain a constant set
of core members of the regulon (63). This is an important source of phenotypic
diversity; even closely related species may have rather different gene contents, requir-
ing rewiring of the regulons for orthologous transcription factors. Considering the
plasticity of Burkholderia genomes and the variable genome sizes, such diversity of
regulons is likely; for example, B. cenocepacia J2315 was isolated from a CF patient, and
~21% of its genome differs from other B. cenocepacia genomes, perhaps reflecting
optimization for persistence in the CF lung (19). Among the annotated Burkholderia
MarR homologs, only four (B. thailandensis MftR, BifR, and OhrR and B. pseudomallei
TctR) have been characterized (64-69).

Major Facilitator Transport Regulator (MftR) Controls Virulence-Associated Genes

The B. thailandensis-encoded MftR protein is divergently oriented from an operon
encoding a major facilitator transport protein (MftP) and Fenl (Fig. 4A). MftP, for which
the substrate remains unknown, belongs to the major facilitator superfamily, and Fenl
is a predicted glycosyl hydrolase. This genomic locus (along with the two palindromes
in the mftR-mftP intergenic region identified as MftR-binding sites [67]) is conserved in
the closely related species B. mallei and B. pseudomallei, while only mftR and mftP (and
the binding sites) are conserved in B. cenocepacia, and the entire locus is absent from
B. xenovorans (Table 2). MftR is a negative regulator of both mftR and mftP-fenl, and
binding of urate to MftR results in attenuation of DNA binding and upregulation of
gene expression (64, 66, 67). Since urate is produced by host xanthine oxidase in
response to bacterial infection, the implication is that MftR would be important for
controlling gene expression after host colonization.

The absence of Fenl results in clumping of bacterial cells in culture (64). Since Fenl
is predicted to be a glycosyl hydrolase, one possibility is that it may be involved in
cleavage of the glycosidic bond between sugars in exopolysaccharides, thereby pro-
moting detachment of cells. The specific function of Fenl notwithstanding, the dere-
pression of mftP-fenl that is associated with ligand (urate) binding to MftR should
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FIG 3 Phylogenetic tree of MarR family proteins encoded by the surveyed Burkholderia species. Se-
quences were aligned using Clustal Omega, and the tree was visualized using iTOL (104, 105). Clades
corresponding to orthologous proteins are collapsed and identified with the protein name where
available or with the respective locus in B. thailandensis. Orthologs identified by collapsed clades are
present in all surveyed Bpc species (denoted Bpc); the presence of a given ortholog in B. cenocepacia or
B. xenovorans is denoted with c and x, respectively. Orthologs in other species are identified by brackets.
E. coli K-12 GntR (an unrelated HTH protein) was used as an outgroup.

promote dispersal of cells, an important step toward colonization of a new environ-
ment.

A genome-wide expression analysis revealed that MftR controls a number of genes
that are associated with survival in a host environment, genes that are also differentially
expressed upon the addition of urate (64). For example, genes associated with survival
under hypoxic conditions and the production of siderophores are upregulated in AmftR
cells, whereas the large gene clusters that encode T3SS components and effectors are

March 2019 Volume 83 Issue 1 e00039-18

Microbiology and Molecular Biology Reviews

mmbr.asm.org 9


https://mmbr.asm.org

Gupta et al.

—<mftR = mftP >( fenl >—
B—< emrB < bifR |- lasA >—
C

O R - S— T T RN
R
M T R S g T
G—< I }-< i < ahsT_}-{_marR >_

FIG 4 Representative genomic loci that are conserved among Burkholderia species. Genes encoding
named MarR family transcriptional regulators or uncharacterized MarR family transcriptional regulators
(with the latter denoted marR) are identified in boldface type. All examples represent B. thailandensis
genes. (A) MftR controls mftR and the divergent mftP-fenl operon (66). (B) BifR controls the bifR-emrB
operon and the divergent lasA gene (originally annotated ecsC) (65). (C) OhrR represses expression of
both ohr and ohrR (68). (D) The hpa operon is conserved in many bacterial species and has been shown
to be under the control of HpaR, which responds to hydroxyphenyl acetate (HPA). Only part of the hpa
gene cluster is shown. The B. xenovorans hpa genes are induced by HPA (86). (E) The MarR family protein
encoded by BTH_I0021 has three Cys residues per monomer and may respond to the cellular redox state.
The gene encoding the RND efflux system outer membrane component is upregulated in B. cenocepacia
upon the addition of an oxidant (13). (F) The MarR family protein encoded by BTH_I2558 has two Cys
residues per monomer. BTH_I2558 is upstream of genes encoding an RND efflux system outer membrane
component, a multidrug resistance protein, and an EmrB family drug resistance transporter. The
expression of genes encoding transporters is reduced ~50% in B. cenocepacia H111 under low-oxygen
conditions (14). (G) The MarR family protein encoded by BTH_/0231 is divergent from an operon encoding
a predicted allophanate hydrolase. The expression of this operon is linked to virulence and T3SS
expression in R. solanacearum (93).

repressed. This suggests that MftR mediates differential gene expression at later stages
of infection, and it rationalizes the absence of MftR in environmental isolates such as B.
xenovorans. That MftR (directly or indirectly) activates the expression of genes encoding
T3SS components while repressing other virulence-associated genes is intriguing, and
it speaks to a complex regulatory network.

Biofilm Regulator (BifR)

The B. thailandensis-encoded redox-sensitive BifR protein is named for its role in
controlling biofilm formation (65). BifR is encoded as part of the emrB-bifR operon,
which is divergently oriented from a gene encoding LasA protease (Fig. 4B); LasA is a
virulence factor in P. aeruginosa, where it contributes to elastin degradation, thus
facilitating invasion of epithelial cells (70). AbifR cells exhibit enhanced elastin degra-
dation, suggesting that B. thailandensis LasA conserves this function (65). The complete
genomic locus lasA-emrB-bifR is conserved in B. cenocepacia, B. pseudomallei, and B.
mallei, and while the emrB-bifR operon is conserved in B. xenovorans, the divergent
gene encoding LasA is not, consistent with its role in virulence (Table 2 and Fig. 3). The
emrB gene is predicted to encode an EmrB family drug resistance transporter for which
the substrate remains unknown.

B. thailandensis BifR binds two adjacent 16-bp palindromes in the emrB-bifR pro-
moter, the sequences of which are conserved in B. pseudomallei, B. mallei, B. cenoce-
pacia, and B. xenovorans (30/32, 30/32, 22/32, and 19/32 bp conserved, respectively),
indicating conservation of the regulatory function yet reflecting divergence in the more
distantly related organisms B. cenocepacia and B. xenovorans. A phylogenetic analysis
also supports a common ancestor for BifR in the surveyed Burkholderia species (Fig. 3).
BifR represses the expression of emrB-bifR and lasA, and the already low expression
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level is further reduced upon the addition of H,0,, conditions under which BifR forms
a cross-linked dimer of dimers (BifR has a single Cys residue in the DNA-binding region).
Such oxidant-mediated repression was also reported in B. cenocepacia J2315, whereas
expression was increased under microaerobic conditions in the H111 strain, suggesting
a conserved regulatory mechanism (13, 14). These observations suggest that oxidized
BifR functions as a “superrepressor” that competes more effectively with RNA polymer-
ase for DNA binding. Notably, the expression level of the phz operon (BTH_I0953 to
BTH_10949) encoding enzymes required for the synthesis of phenazine derivatives is
~28-fold higher in the AbifR strain (65); in P. aeruginosa, such compounds act as
alternative electron acceptors within a biofilm, where they support survival in a
low-oxygen environment, and they contribute to maintaining iron homeostasis (71-73).
Thus, efficient repression would be expected when oxygen is abundant, conditions
under which BifR is in superrepressor mode. Taken together, these data show that BifR
links biofilm formation to the cellular redox state. The absence of the virulence-
associated lasA gene from B. xenovorans indicates that the BifR regulon varies among
species.

Response to Organic Hydroperoxides: OhrR

Several genes encoding MarR family proteins are adjacent to genes encoding
proteins with likely roles in association with a mammalian host. For example, the
organic hydroperoxide-sensing OhrR protein, which has been characterized in numer-
ous bacterial species, including B. thailandensis, is conserved among Burkholderia
species (Fig. 3 and 4C). OhrR is oxidized by organic hydroperoxides, results of which are
that conformational changes occur, DNA binding is attenuated, and expression of the
adjacent ohr gene is enhanced; organic hydroperoxide reductase (Ohr) degrades the
damaging hydroperoxides, which promotes survival (68, 74-76).

Organic hydroperoxides may be produced upon infection, linking OhrR to virulence;
fatty acid (mainly linoleic acid) hydroperoxides are produced in plants (77, 78), and
mammalian cells can release the polyunsaturated fatty acid arachidonic acid, which is
subsequently oxidized by lipoxygenase enzymes (79, 80). In sessile B. cenocepacia, ohr
was surprisingly shown to be markedly upregulated upon the addition of inorganic
oxidants, and in B. thailandensis, a modest upregulation of ohr by inorganic oxidants
was reported to depend on OhrR (13). Such a response to inorganic oxidants is not a
common feature of OhrR proteins and may reflect optimization of individual OhrR
proteins for bacterial survival in specific oxidative environments. The accumulation of
plant exudates in the rhizosphere rationalizes the need to retain ohrR-ohr in nonpatho-
genic soil dwellers such as B. xenovorans.

Notably, deletion of ohrR has been reported to reduce virulence in some bacterial
species, including B. thailandensis (despite increased Ohr production, which leads to
enhanced survival in vitro upon exposure to organic hydroperoxides), and this reduced
virulence was inferred to derive from OhrR-mediated control of genes other than ohr
(68, 81, 82). In B. thailandensis, another counterintuitive observation is that deletion of
ohr results in increased bacterial killing of Caenorhabditis elegans and in modestly
enhanced survival compared to wild-type cells upon exposure to organic hydroperox-
ides in vitro. This observation suggests that the higher cellular levels of organic
hydroperoxides may more efficiently induce genes associated with survival and repair
of oxidant-mediated damage and that the B. thailandensis Ohr-OhrR system is opti-
mized to ensure that cellular levels of organic hydroperoxides remain high enough for
such induction (68). Accordingly, the OhrR regulon may well differ among Burkholderia
species.

Control of Genes Encoding Type 6 Secretion System Components by TctR

A genetic screen for regulators of genes encoding components of a B. pseudomallei
K96243-encoded type 6 secretion system (T6SS-2) uncovered a MarR family protein
encoded by BPSL3431, which was named TctR (for T6SS cluster 2 regulator) (69). In
general, T6SSs are contact-dependent systems that inject effectors directly into target

March 2019 Volume 83 Issue 1 e00039-18

Microbiology and Molecular Biology Reviews

mmbr.asm.org 11


https://mmbr.asm.org

Gupta et al.

cells, either competing bacterial cells or eukaryotic cells, thereby participating in
establishing bacterial communities and in virulence (83). Among the Burkholderia
T6SSs, T6SS-2 has been implicated in interaction with bacterial cells, not virulence (84).
Salient observations of that recent report include the ability of TctR to repress the
expression of the gene cluster encoding T65S-2 components (locus tags BPSS0515 to
BPSS0533). Using a representative T6SS promoter-lacZ transcriptional fusion, subinhibi-
tory concentrations of antibiotics such as fluoroquinolones were reported to induce
expression (including the expression of other T6SS clusters) but only in sessile cells and
not in planktonic cells; the mechanism was not identified (69).

The gene encoding TctR is part of a conserved operon that also encodes a glutamine
amidotransferase; TctR has four Cys residues per monomer, suggesting the potential for
regulation by oxidation. In B. cenocepacia H111, this operon is repressed ~2-fold under
microaerobic conditions, consistent with regulation by the redox state (14). Glutamine
amidotransferases participate in a wide range of biosynthetic processes by transferring
an amino group from glutamine to a specific substrate. That T6SS genes under TctR
control appear to be sensitive to subinhibitory levels of antibiotics may not be due to
a direct interaction of antibiotics with the transcription factor. In analogy with the
release of redox-active Cu2* as a consequence of antibiotic-induced envelope stress in
E. coli (45), one possibility is that the effect of antibiotics on the expression of genes
encoding T6SS components in B. pseudomallei is due to oxidation of TctR.

Degradation of Aromatic Compounds

HpaR. Degradation of aromatic compounds, including compounds deriving from
lignin degradation, root exudates, and xenobiotics, generally occurs via peripheral
pathways that feed into central pathways. The homoprotocatechuate pathway in which
homoprotocatechuate undergoes ring cleavage and conversion to citric acid cycle
intermediates has been functionally characterized in several bacterial species, including
B. xenovorans (85, 86). In B. xenovorans (and other species), expression of hpa genes is
induced by 3- and 4-hydroxyphenylacetate (3-HPA and 4-HPA, respectively) (86). In E.
coli, HpaR was shown to repress both the hpa operon as well as its own expression (85).
Indeed, several MarR family proteins for which related aromatics induce the expression
of the adjacent catabolic enzymes have been characterized (38). Based on the conser-
vation of the hpa gene locus (Fig. 4D), it is therefore a reasonable prediction that B.
xenovorans HpaR likewise responds directly to 3-HPA and 4-HPA to induce hpa expres-
sion and that HpaR serves an equivalent function in other Burkholderia species.

The vanAB operon. In response to pathogens, plant roots may release de novo-
synthesized hydroxycinnamates, such as ferulate and p-coumarate, into the rhizo-
sphere. Hydroxycinnamates have broad antimicrobial activity, as they disrupt mem-
brane integrity and decouple the respiratory proton gradient (87). As an example of the
relevance of such compounds, mutations in the plant pathogen Ralstonia solanacearum
that render it deficient in the degradation of hydroxycinnamates also cause it to be
less virulent (88). Degradation of ferulate proceeds through vanillate, which is in
turn converted to protocatechuate. An operon annotated vanAB is oriented diver-
gently from a gene encoding a MarR homolog (BCAM2435) in B. cenocepacia. The
vanAB operon is predicted to encode a vanillate O-demethylase that converts
vanillate to protocatechuate. A predicted function of the associated MarR family
protein is therefore to respond to vanillate or other precursors to induce vanAB
expression; a potential binding site for the MarR family protein consisting of 7-bp
half-sites separated by 3 bp (ACTGAATctcATTCAGT) may be identified 59 bp up-
stream of the start codon. That this locus is found in B. cenocepacia and phyto-
pathogens such as B. glumae (but not in Bpc and Bcc species) may be related to
their success as plant pathogens.

Degradation of hydroxycinnamates. B. cenocepacia BCAM2794 encodes a MarR
family transcription factor, and it is flanked by a gene encoding p-hydroxycinnamoyl
CoA hydratase-lyase and a gene encoding gluconolactonase; these three genes are
repressed 3- to 10-fold in B. cenocepacia H111 during growth under low-oxygen
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conditions (14). This locus is not conserved in the other surveyed species (Table 2). The
p-hydroxycinnamoyl CoA hydratase-lyase enzyme participates in the degradation of
hydroxycinnamates by converting feruloyl-CoA to acetyl-CoA and vanillin (89). In
Sphingobium sp. strain SYK-6, the genes encoding enzymes involved in ferulate deg-
radation are repressed by a MarR protein (FerC), which responds to feruloyl-CoA and
related CoA derivatives (90). Ferulate esters function as antioxidants (91), which could
rationalize the downregulation of enzymes involved in ferulate degradation when
oxygen levels are low.

Regulation by Reactive Oxygen Species

While gene regulation by B. thailandensis BifR, MftR, and OhrR and B. pseudomallei
TctR has been experimentally demonstrated, and the functional role of HpaR may be
predicted with some confidence based on functional characterization of orthologs from
other bacterial species, the functions of the remaining MarR family proteins are more
speculative. An intriguing characteristic is that the vast majority of Burkholderia-
encoded MarR homologs have at least one cysteine, raising the possibility that some
may be sensitive to ROS (as discussed above for BifR, OhrR, TctR, and BCAM2794).
Proteins such as OhrR clearly respond to host-derived organic hydroperoxides; how-
ever, other redox-sensitive MarR family proteins could potentially respond to both
endogenous and exogenous ROS, depending on their reactivity with various oxidants.
Among the Bpc group members, MftR and B. pseudomallei BPSL1400 have no Cys
residues, and several MarR family proteins that are unique to B. cenocepacia have no
Cys residues, including BCAM2435, which would be predicted to bind aromatic com-
pounds, as noted above.

A microarray analysis of genes that are differentially expressed upon the addition of
an oxidant to sessile B. cenocepacia J2315 cells showed an ~3-fold increase in the
expression of BCAL3574, which is predicted to encode an RND efflux system outer
membrane component (13). BCAL3574 is located downstream of a gene encoding a
small hypothetical protein and as part of a conserved locus that also includes divergent
genes encoding a MarR family transcription factor and an EmrB family drug resistance
transporter (Fig. 4E and Table 2). The MarR family protein has three Cys residues per
monomer and is therefore likely to sense the cellular redox state. Another conserved
MarR family regulator predicted to control the expression of transporters is encoded by
BTH_[2558, which is upstream of genes encoding an RND efflux system outer mem-
brane lipoprotein, a multidrug resistance protein, and an EmrB/QacA family drug
resistance transporter (annotated as a possible operon in B. thailandensis but not in
other species) (Fig. 4F); this MarR family protein has two Cys residues per monomer. The
expression of the corresponding genes encoding transporters is reduced ~50% in B.
cenocepacia H111 under low-oxygen conditions and in strain J2315 during stationary
phase in minimal medium (14, 92).

Of the remaining MarR family transcription factors that are conserved among
species, the protein encoded by BTH_l0231 is divergent from an operon encoding a
predicted allophanate hydrolase (Fig. 4G); this MarR family protein has four Cys residues
per monomer. Allophanate hydrolase is required for the cells to use urea as a nitrogen
source, and it converts allophanate to ammonia and carbon dioxide. In the plant
pathogen R. solanacearum, allophanate hydrolase was also shown to be required for
pathogenicity and for optimal expression of T3SS components (93). The latter obser-
vation highlights the fact that even though the locus is conserved in environmental
bacteria such as B. xenovorans, expression may still selectively promote survival in a
host environment.

Another conserved operon that is repressed (2- to 5-fold) in B. cenocepacia H111 and
J2315 grown under low-oxygen tension corresponds to the BTH_II1396-BTH_I1397
operon, which encodes a MarR family protein with one Cys residue per monomer and
a CIC chloride channel (14, 92). In E. coli, the CIC chloride channel functions as a Cl—/H™*
exchanger and is involved in acid resistance (94).
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BTH_I10468 is predicted to be part of an operon that includes a gene encoding
isochorismatase and a fusaric acid resistance protein (FusC_2, an inner membrane
transporter). This operon is conserved in Bpc species, but it is absent from both B.
cenocepacia and B. xenovorans. The fusaric acid resistance protein is involved in
resistance to the nonspecific fungal toxin fusaric acid, which is produced by Fusarium
species and considered a virulence factor in their interaction with susceptible plants
(95). Resistance to fusaric acid would therefore benefit inhabitants of the rhizosphere.
Indeed, several Burkholderia species preferentially colonize the rhizosphere of plants
infected with Fusarium spp. compared to noninfected control plants, likely because
they utilize fungal exudates as a source of nutrients. In addition, the bacteria have the
ability to restrict fungal growth in vitro (96). Isochorismatase catalyzes the conversion
of isochorismate into 2,3-dihydroxybenzoate and pyruvate. Isochorismate is a precursor
to several siderophores, which contribute to virulence by mediating the uptake of iron;
for example, P. aeruginosa PhzD was identified as an isochorismatase that participates
in the biosynthesis of the siderophore phenazine (97).

B. cenocepacia instead encodes a predicted isochorismatase downstream of
BCAM1750, which encodes a MarR family protein. This locus is conserved in B. xeno-
vorans. Also conserved between B. cenocepacia and B. xenovorans is a locus consisting
of a gene encoding a MarR homolog (BCAS0018/Bxe_B2611) followed by a gene
encoding a fusaric acid resistance protein (FusC), a small hypothetical protein, an efflux
system transport protein, and an outer membrane efflux protein. It has been reported
that the ability of bacteria (with pseudomonads exhibiting the greatest resistance) to
survive in the presence of fusaric acid correlates with the copy number of genes
encoding FusC. Among the Burkholderia species analyzed in this particular survey were
B. glumae and B. cepacia, both of which encode two FusC proteins; one of these FusC
proteins is a homolog of B. cenocepacia BCAS0018 (95). Expression of the B. cepacia
fusaric acid resistance locus in E. coli conferred resistance to fusaric acid, indicating that
the enzyme is functional (98). Genes corresponding to BCAS0018 and the adjacent fusC
gene (which overlaps BCAS0018 by 3 bp) are repressed ~5-fold in B. cenocepacia H111
under low-oxygen conditions; an almost perfectly conserved 16-bp palindrome (TGTC
AtCC-GGGTGACA) may be identified in the BCAS0018 promoter (14). While the MarR
family protein encoded by BCAS0078 has two Cys residues per monomer, consistent
with regulation by the redox state, the homolog encoded by Bxe _B2611 has none,
indicating that inducing signals may be different.

A saturating transposon insertion screen that aimed to predict essential genes in B.
pseudomallei K96243 was reported (99). In this transposon-directed insertion sequenc-
ing (TraDIS) approach, putative essential genes are identified by the absence of a
transposon insertion. Among the genes predicted to be essential were BPSL1750,
encoding a MarR family transcription factor, and the adjacent gene encoding an ABC
transporter (BPSL1751) for which the substrate is unknown. This locus is conserved in B.
mallei but not in any of the other surveyed species. However, a previous characteriza-
tion of B. pseudomallei strain 708a, which was identified based on susceptibility to
aminoglycoside antibiotics, revealed that this strain lacks an ~131-kb region that
includes not only genes encoding the AmrAB-OprA efflux system responsible for
aminoglycoside efflux but also a number of other genes (100). The region deleted in
strain 708a includes genes corresponding to BPSL1750 and BPSL1751 as well as several
other genes identified in the TraDIS screen as potentially being essential. While it is
conceivable that the genetic background may impact which genes are essential, it is
more likely that this underrepresentation in the TraDIS screen reflects that the genes in
question confer a fitness advantage, possibly combined with some insertion bias. The
MarR homolog encoded by BPSL1750 has two Cys residues per monomer and could
potentially be responsive to the cellular redox state.

Several MarR homologs are absent from the Bpc species, including the B.
cenocepacia-borne BCAL1761 gene, which is downstream of a gene encoding a pre-
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dicted glutathione-dependent formaldehyde-activating enzyme; this enzyme is in-
volved in the processing of the toxic formaldehyde that is produced during various
metabolic reactions (101, 102). Both genes are upregulated ~6-fold during growth
under microaerobic conditions (14). A TraDIS approach to the prediction of essential
genes in B. cenocepacia J2315 identified BCAL1761 as a conditionally essential/critical
gene for growth on minimal medium (but not in LB) (103). In contrast, the MarR family
protein encoded by BCAMO0731 is repressed ~2-fold under microaerobic conditions,
whereas the divergent gene BCAMO0730, which encodes a Snoal-like protein (a
polyketide cyclase), is upregulated ~3-fold (14).

The largest number of MarR homologs is encoded by B. xenovorans (>30, based on
a search of the Burkholderia Genome Database). B. xenovorans LB400 has one of the
largest bacterial genomes, with an estimated 20% of genes having been recently
acquired by lateral gene transfer (34). MarR homologs that are not encoded by Bpc and
Bcc species include several that are predicted to control the expression of transporters
and biosynthetic operons (not shown).

OUTLOOK

The modus operandi of MarR family transcription factors is to sense changes in the
environment, either in the form of binding a small-molecule ligand or metal ion or by
oxidation of specific cysteines, and to transduce such signals into differential gene
expression. As such, they are ideally suited to sense host-derived signals and effect the
requisite expression of virulence-associated genes. Among the MarR family proteins
encoded by Burkholderia species, some that are highly conserved and predicted to
perform the same function in all species may be identified, such as HpaR, which is
predicted to control the production of enzymes that function in the central homopro-
tocatechuate pathway. Other conserved MarR family proteins are likely to conserve the
control of a core regulon but also to regulate other genes that differ between species,
as exemplified by BifR and most likely OhrR, which has been implicated in virulence.
However, others are encoded only by Bpc and Bcc species, most notably MftR, which
has been shown to control virulence-associated genes. While many predictions may be
reliably made about the regulation of genes located adjacent to genes encoding MarR
family transcriptional regulators, it is clear that determination of individual regulons
from different species is liable to uncover important and unexpected clues to their role
in shaping individual phenotypes. That some MarR homologs may be conditionally
critical for growth is particularly intriguing and should serve as an added incentive to
define their mode of action.
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